Učenje Pythona: od nič do junaka
Najprej, kaj je Python? Po besedah njegovega ustvarjalca Guida van Rossuma je Python:
"Programski jezik na visoki ravni, njegova osnovna filozofija oblikovanja pa je berljivost kode in sintaksa, ki programerjem omogoča, da izrazijo koncepte v nekaj vrsticah kode."Zame je bil prvi razlog za učenje Pythona ta, da je pravzaprav čudovitprogramski jezik. Res je bilo naravno, da sem vanj kodiral in izrazil svoje misli.
Drug razlog je bil, da lahko kodiranje v Pythonu uporabljamo na več načinov: tukaj se zasvetijo podatkovne vede, spletni razvoj in strojno učenje. Quora, Pinterest in Spotify uporabljajo Python za svoj spletni razvoj. Naučimo se torej malo o tem.
Osnove
1. Spremenljivke
O spremenljivkah lahko razmišljate kot o besedah, ki hranijo vrednost. Tako preprosto.
V Pythonu je zelo enostavno definirati spremenljivko in ji nastaviti vrednost. Predstavljajte si, da želite shraniti številko 1 v spremenljivko, imenovano "ena". Naredimo to:
one = 1
Kako preprosto je bilo to? Pravkar ste spremenljivki "ena" dodelili vrednost 1.
two = 2 some_number = 10000
In katerim koli drugim spremenljivkam lahko dodelite katero koli drugo vrednost . Kot vidite v zgornji tabeli, spremenljivka " dva " shrani celo število 2 , " some_number " pa 10.000 .
Poleg celih števil lahko uporabimo tudi logične vrednosti (True / False), nize, float in toliko drugih vrst podatkov.
# booleans true_boolean = True false_boolean = False # string my_name = "Leandro Tk" # float book_price = 15.80
2. Nadzor toka: pogojni stavki
» Če « uporablja izraz, da oceni, ali je stavek resničen ali neresničen. Če je True, izvrši tisto, kar je znotraj stavka "if". Na primer:
if True: print("Hello Python If") if 2 > 1: print("2 is greater than 1")
2 je večja od 1 , zato se izvede koda za tiskanje .
Stavek " else " se izvrši, če je izraz " if " napačen .
if 1 > 2: print("1 is greater than 2") else: print("1 is not greater than 2")
1 ni večji od 2 , zato se bo izvedla koda znotraj stavka " else ".
Uporabite lahko tudi izjavo " elif ":
if 1 > 2: print("1 is greater than 2") elif 2 > 1: print("1 is not greater than 2") else: print("1 is equal to 2")
3. Looping / Iterator
V Pythonu lahko ponavljamo v različnih oblikah. Govoril bom o dveh: medtemin za .
Medtem ko zanka: medtem ko je stavek True, se bo izvedla koda znotraj bloka. Ta koda bo torej natisnila številko od 1 do 10 .
num = 1 while num <= 10: print(num) num += 1
Pa zanka potrebuje " zanke stanje. ”Če ostane True, se ponavlja. V tem primeru, ko num
se 11
je stanje zanka Rezultat False
.
Še en osnovni del kode za boljše razumevanje:
loop_condition = True while loop_condition: print("Loop Condition keeps: %s" %(loop_condition)) loop_condition = False
Pogoj zanke je True
tako, da se ponavlja - dokler ga ne nastavimo na False
.
Za Looping : na blok uporabite spremenljivko " num " in stavek " for " vam jo ponovi. Ta koda bo natisnjena enako kot medtem ko : od 1 do 10 .
for i in range(1, 11): print(i)
Vidiš? Tako preprosto je. Obseg se začne z 1
in traja do 11
elementa th ( 10
je 10
element th).
Seznam: Zbirka | Matrika | Struktura podatkov
Predstavljajte si, da želite celo število 1 shraniti v spremenljivko. Morda pa zdaj želite shraniti 2. In 3, 4, 5 ...
Ali imam še en način za shranjevanje vseh celih števil, ki jih želim, vendar ne v milijonih spremenljivk ? Uganili ste - res obstaja še en način za njihovo shranjevanje.
List
je zbirka, ki jo lahko uporabite za shranjevanje seznama vrednosti (kot so ta cela števila, ki jih želite). Torej, uporabimo ga:
my_integers = [1, 2, 3, 4, 5]
Res je preprosto. Ustvarili smo matriko in jo shranili na my_integer .
Mogoče pa sprašujete: "Kako lahko dobim vrednost iz te matrike?"
Super vprašanje. List
ima koncept, imenovan indeks . Prvi element dobi indeks 0 (nič). Drugi dobi 1 in tako naprej. Razumeš idejo.
Da bi bilo bolj jasno, lahko matriko in vsak element predstavimo s svojim indeksom. Lahko ga narišem:

Z uporabo sintakse Python je tudi enostavno razumeti:
my_integers = [5, 7, 1, 3, 4] print(my_integers[0]) # 5 print(my_integers[1]) # 7 print(my_integers[4]) # 4
Predstavljajte si, da ne želite shranjevati celih števil. Samo shraniti želite nize, kot je seznam imen sorodnikov. Moja bi izgledala nekako takole:
relatives_names = [ "Toshiaki", "Juliana", "Yuji", "Bruno", "Kaio" ] print(relatives_names[4]) # Kaio
Deluje enako kot cela števila. Lepo.
Ravno smo izvedeli, kako Lists
delujejo indeksi. A vseeno vam moram pokazati, kako lahko v List
podatkovno strukturo dodamo element (element na seznam).
Najpogostejši način za dodajanje nove vrednosti a List
je append
. Poglejmo, kako deluje:
bookshelf = [] bookshelf.append("The Effective Engineer") bookshelf.append("The 4 Hour Work Week") print(bookshelf[0]) # The Effective Engineer print(bookshelf[1]) # The 4 Hour Work Week
append
je zelo preprosto. Za parameter morate uporabiti le element (npr. " Učinkovit inženir ") append
.
No, dovolj o Lists
. Pogovorimo se o drugi strukturi podatkov.
Slovar: Struktura podatkov ključ-vrednost
Zdaj vemo, da Lists
so indeksirane s celoštevilčnimi številkami. Kaj pa, če ne želimo celih števil uporabljati kot indekse? Nekatere podatkovne strukture, ki jih lahko uporabimo, so številski, nizni ali drugi tipi indeksov.
Spoznajmo Dictionary
strukturo podatkov. Dictionary
je zbirka parov ključ / vrednost. Evo, kako izgleda:
dictionary_example = { "key1": "value1", "key2": "value2", "key3": "value3" }
Ključ je indeks kaže navrednost . Kako dostopamo do Dictionary
vrednosti ? Uganili ste - s pomočjo ključa . Poskusimo:
dictionary_tk = { "name": "Leandro", "nickname": "Tk", "nationality": "Brazilian" } print("My name is %s" %(dictionary_tk["name"])) # My name is Leandro print("But you can call me %s" %(dictionary_tk["nickname"])) # But you can call me Tk print("And by the way I'm %s" %(dictionary_tk["nationality"])) # And by the way I'm Brazilian
Ustvaril sem Dictionary
približno sebe. Moje ime, vzdevek in državljanstvo. Ti atributi so Dictionary
ključi .
Ko smo se naučili dostopati do List
uporabljenega indeksa, za dostop do vrednosti, shranjene v datoteki, uporabljamo tudi indekse ( ključe v Dictionary
kontekstu) .Dictionary
V primeru sem natisnil stavek o sebi z uporabo vseh vrednosti, shranjenih v Dictionary
. Precej preprosto, kajne?
Another cool thing about Dictionary
is that we can use anything as the value. In the Dictionary
I created, I want to add the key “age” and my real integer age in it:
dictionary_tk = { "name": "Leandro", "nickname": "Tk", "nationality": "Brazilian", "age": 24 } print("My name is %s" %(dictionary_tk["name"])) # My name is Leandro print("But you can call me %s" %(dictionary_tk["nickname"])) # But you can call me Tk print("And by the way I'm %i and %s" %(dictionary_tk["age"], dictionary_tk["nationality"])) # And by the way I'm Brazilian
Here we have a key (age) value (24) pair using string as the key and integer as the value.
As we did with Lists
, let’s learn how to add elements to a Dictionary
. The keypointing to avalue is a big part of what Dictionary
is. This is also true when we are talking about adding elements to it:
dictionary_tk = { "name": "Leandro", "nickname": "Tk", "nationality": "Brazilian" } dictionary_tk['age'] = 24 print(dictionary_tk) # {'nationality': 'Brazilian', 'age': 24, 'nickname': 'Tk', 'name': 'Leandro'}
We just need to assign a value to a Dictionary
key. Nothing complicated here, right?
Iteration: Looping Through Data Structures
As we learned in the Python Basics, the List
iteration is very simple. We Python
developers commonly use For
looping. Let’s do it:
bookshelf = [ "The Effective Engineer", "The 4-hour Workweek", "Zero to One", "Lean Startup", "Hooked" ] for book in bookshelf: print(book)
So for each book in the bookshelf, we (can do everything with it) print it. Pretty simple and intuitive. That’s Python.
For a hash data structure, we can also use the for
loop, but we apply the key
:
dictionary = { "some_key": "some_value" } for key in dictionary: print("%s --> %s" %(key, dictionary[key])) # some_key --> some_value
This is an example how to use it. For each key
in the dictionary
, we print
the key
and its corresponding value
.
Another way to do it is to use the iteritems
method.
dictionary = { "some_key": "some_value" } for key, value in dictionary.items(): print("%s --> %s" %(key, value)) # some_key --> some_value
We did name the two parameters as key
and value
, but it is not necessary. We can name them anything. Let’s see it:
dictionary_tk = { "name": "Leandro", "nickname": "Tk", "nationality": "Brazilian", "age": 24 } for attribute, value in dictionary_tk.items(): print("My %s is %s" %(attribute, value)) # My name is Leandro # My nickname is Tk # My nationality is Brazilian # My age is 24
We can see we used attribute as a parameter for the Dictionary
key
, and it works properly. Great!
Classes & Objects
A little bit of theory:
Objects are a representation of real world objects like cars, dogs, or bikes. The objects share two main characteristics: data and behavior.
Cars have data, like number of wheels, number of doors, and seating capacity They also exhibit behavior: they can accelerate, stop, show how much fuel is left, and so many other things.
We identify data as attributes and behavior as methods in object-oriented programming. Again:
Data → Attributes and Behavior → Methods
And a Class is the blueprint from which individual objects are created. In the real world, we often find many objects with the same type. Like cars. All the same make and model (and all have an engine, wheels, doors, and so on). Each car was built from the same set of blueprints and has the same components.
Python Object-Oriented Programming mode: ON
Python, as an Object-Oriented programming language, has these concepts: class and object.
A class is a blueprint, a model for its objects.
So again, a class it is just a model, or a way to define attributes and behavior (as we talked about in the theory section). As an example, a vehicle class has its own attributes that define what objects are vehicles. The number of wheels, type of tank, seating capacity, and maximum velocity are all attributes of a vehicle.
With this in mind, let’s look at Python syntax for classes:
class Vehicle: pass
We define classes with a class statement — and that’s it. Easy, isn’t it?
Objects are instances of a class. We create an instance by naming the class.
car = Vehicle() print(car) #
Here car
is an object (or instance) of the classVehicle
.
Remember that our vehicle class has four attributes: number of wheels, type of tank, seating capacity, and maximum velocity. We set all these attributes when creating a vehicle object. So here, we define our class to receive data when it initiates it:
class Vehicle: def __init__(self, number_of_wheels, type_of_tank, seating_capacity, maximum_velocity): self.number_of_wheels = number_of_wheels self.type_of_tank = type_of_tank self.seating_capacity = seating_capacity self.maximum_velocity = maximum_velocity
We use the init
method. We call it a constructor method. So when we create the vehicle object, we can define these attributes. Imagine that we love the Tesla Model S, and we want to create this kind of object. It has four wheels, runs on electric energy, has space for five seats, and the maximum velocity is 250km/hour (155 mph). Let’s create this object:
tesla_model_s = Vehicle(4, 'electric', 5, 250)
Four wheels + electric “tank type” + five seats + 250km/hour maximum speed.
All attributes are set. But how can we access these attributes’ values? We send a message to the object asking about them. We call it a method. It’s the object’s behavior. Let’s implement it:
class Vehicle: def __init__(self, number_of_wheels, type_of_tank, seating_capacity, maximum_velocity): self.number_of_wheels = number_of_wheels self.type_of_tank = type_of_tank self.seating_capacity = seating_capacity self.maximum_velocity = maximum_velocity def number_of_wheels(self): return self.number_of_wheels def set_number_of_wheels(self, number): self.number_of_wheels = number
This is an implementation of two methods: number_of_wheels and set_number_of_wheels. We call it getter
& setter
. Because the first gets the attribute value, and the second sets a new value for the attribute.
In Python, we can do that using @property
(decorators
) to define getters
and setters
. Let’s see it with code:
class Vehicle: def __init__(self, number_of_wheels, type_of_tank, seating_capacity, maximum_velocity): self.number_of_wheels = number_of_wheels self.type_of_tank = type_of_tank self.seating_capacity = seating_capacity self.maximum_velocity = maximum_velocity @property def number_of_wheels(self): return self.__number_of_wheels @number_of_wheels.setter def number_of_wheels(self, number): self.__number_of_wheels = number
And we can use these methods as attributes:
tesla_model_s = Vehicle(4, 'electric', 5, 250) print(tesla_model_s.number_of_wheels) # 4 tesla_model_s.number_of_wheels = 2 # setting number of wheels to 2 print(tesla_model_s.number_of_wheels) # 2
This is slightly different than defining methods. The methods work as attributes. For example, when we set the new number of wheels, we don’t apply two as a parameter, but set the value 2 to number_of_wheels
. This is one way to write pythonic
getter
and setter
code.
But we can also use methods for other things, like the “make_noise” method. Let’s see it:
class Vehicle: def __init__(self, number_of_wheels, type_of_tank, seating_capacity, maximum_velocity): self.number_of_wheels = number_of_wheels self.type_of_tank = type_of_tank self.seating_capacity = seating_capacity self.maximum_velocity = maximum_velocity def make_noise(self): print('VRUUUUUUUM')
Ko pokličemo to metodo, vrne niz » VRRRRUUUUM. "
tesla_model_s = Vehicle(4, 'electric', 5, 250) tesla_model_s.make_noise() # VRUUUUUUUM
Kapsulacija: skrivanje informacij
Kapsulacija je mehanizem, ki omejuje neposreden dostop do podatkov in metod predmetov. Hkrati pa olajša delovanje s temi podatki (metode predmetov).
“Z enkapsulacijo lahko skrijete podatke in funkcije članov. Po tej definiciji enkapsulacija pomeni, da je notranja predstavitev predmeta na splošno skrita pred očmi zunaj definicije predmeta. " - WikipedijaVsa notranja predstavitev predmeta je skrita od zunaj. Samo objekt lahko komunicira s svojimi notranjimi podatki.
Najprej moramo razumeti, kako public
in non-public
primerkov spremenljivke in metode dela.
Spremenljivke javnega primerka
For a Python class, we can initialize a public instance variable
within our constructor method. Let’s see this:
Within the constructor method:
class Person: def __init__(self, first_name): self.first_name = first_name
Here we apply the first_name
value as an argument to the public instance variable
.
tk = Person('TK') print(tk.first_name) # => TK
Within the class:
class Person: first_name = 'TK'
Here, we do not need to apply the first_name
as an argument, and all instance objects will have a class attribute
initialized with TK
.
tk = Person() print(tk.first_name) # => TK
Cool. We have now learned that we can use public instance variables
and class attributes
. Another interesting thing about the public
part is that we can manage the variable value. What do I mean by that? Our object
can manage its variable value: Get
and Set
variable values.
Keeping the Person
class in mind, we want to set another value to its first_name
variable:
tk = Person('TK') tk.first_name = 'Kaio' print(tk.first_name) # => Kaio
No pa gremo. Pravkar smo nastavili drugo vrednost ( kaio
) na first_name
spremenljivko primerka in ta vrednost je posodobila. Tako preprosto. Ker gre za public
spremenljivko, lahko to storimo.
Nejavna spremenljivka primerka
Tu ne uporabljamo izraza "zasebno", saj noben atribut v Pythonu ni zares zaseben (brez na splošno nepotrebnega dela). - PEP 8Kot public instance variable
lahko določimo non-public instance variable
oboje znotraj metode konstruktorja ali znotraj razreda. Sintaksna razlika je: pred imenom non-public instance variables
uporabite podčrtaj ( _
) variable
.
_spam
) Je
treba obravnavati kot nejavni del API-ja (ne glede na to, ali gre za funkcijo, metodo ali podatkovnega člana). " - Fundacija za programsko opremo Python
Tu je primer:
class Person: def __init__(self, first_name, email): self.first_name = first_name self._email = email
Ste videli email
spremenljivko? Tako definiramo non-public variable
:
tk = Person('TK', '[email protected]') print(tk._email) # [email protected]
Do njega lahko dostopamo in ga posodobimo.
Non-public variables
so le dogovor in jih je treba obravnavati kot nejavni del API-ja.
Zato uporabljamo metodo, ki nam omogoča, da to storimo znotraj definicije našega razreda. Uvedimo dve metodi ( email
in update_email
) za njegovo razumevanje:
class Person: def __init__(self, first_name, email): self.first_name = first_name self._email = email def update_email(self, new_email): self._email = new_email def email(self): return self._email
Zdaj lahko non-public variables
te metode posodabljamo in dostopamo . Pa poglejmo:
tk = Person('TK', '[email protected]') print(tk.email()) # => [email protected] # tk._email = '[email protected]' -- treat as a non-public part of the class API print(tk.email()) # => [email protected] tk.update_email('[email protected]') print(tk.email()) # => [email protected]
- We initiated a new object with
first_name
TK andemail
[email protected] - Printed the email by accessing the
non-public variable
with a method - Tried to set a new
email
out of our class - We need to treat
non-public variable
asnon-public
part of the API - Updated the
non-public variable
with our instance method - Success! We can update it inside our class with the helper method
Public Method
With public methods
, we can also use them out of our class:
class Person: def __init__(self, first_name, age): self.first_name = first_name self._age = age def show_age(self): return self._age
Let’s test it:
tk = Person('TK', 25) print(tk.show_age()) # => 25
Great — we can use it without any problem.
Non-public Method
But with non-public methods
we aren’t able to do it. Let’s implement the same Person
class, but now with a show_age
non-public method
using an underscore (_
).
class Person: def __init__(self, first_name, age): self.first_name = first_name self._age = age def _show_age(self): return self._age
And now, we’ll try to call this non-public method
with our object:
tk = Person('TK', 25) print(tk._show_age()) # => 25
Do njega lahko dostopamo in ga posodobimo.
Non-public methods
so le dogovor in jih je treba obravnavati kot nejavni del API-ja.
Tu je primer, kako ga lahko uporabimo:
class Person: def __init__(self, first_name, age): self.first_name = first_name self._age = age def show_age(self): return self._get_age() def _get_age(self): return self._age tk = Person('TK', 25) print(tk.show_age()) # => 25
Tu imamo a _get_age
non-public method
in a show_age
public method
. show_age
Se naš objekt lahko uporablja (iz našega razreda), in _get_age
se uporablja samo znotraj našega razreda definiciji (znotraj show_age
metoda). Ampak še enkrat: po dogovoru.
Povzetek enkapsulacije
Z enkapsulacijo lahko zagotovimo, da je notranja predstavitev predmeta skrita od zunaj.
Dedovanje: vedenje in značilnosti
Nekaterim predmetom je skupno nekaj: njihovo vedenje in značilnosti.
Na primer, nekatere značilnosti in vedenja sem podedoval po očetu. Podedoval sem njegove oči in lase kot značilnosti, njegovo nestrpnost in zaprtost pa kot vedenje.
In object-oriented programming, classes can inherit common characteristics (data) and behavior (methods) from another class.
Let’s see another example and implement it in Python.
Imagine a car. Number of wheels, seating capacity and maximum velocity are all attributes of a car. We can say that anElectricCar class inherits these same attributes from the regular Car class.
class Car: def __init__(self, number_of_wheels, seating_capacity, maximum_velocity): self.number_of_wheels = number_of_wheels self.seating_capacity = seating_capacity self.maximum_velocity = maximum_velocity
Our Car class implemented:
my_car = Car(4, 5, 250) print(my_car.number_of_wheels) print(my_car.seating_capacity) print(my_car.maximum_velocity)
Once initiated, we can use all instance variables
created. Nice.
In Python, we apply a parent class
to the child class
as a parameter. An ElectricCar class can inherit from our Car class.
class ElectricCar(Car): def __init__(self, number_of_wheels, seating_capacity, maximum_velocity): Car.__init__(self, number_of_wheels, seating_capacity, maximum_velocity)
Simple as that. We don’t need to implement any other method, because this class already has it (inherited from Car class). Let’s prove it:
my_electric_car = ElectricCar(4, 5, 250) print(my_electric_car.number_of_wheels) # => 4 print(my_electric_car.seating_capacity) # => 5 print(my_electric_car.maximum_velocity) # => 250
Beautiful.
That’s it!
We learned a lot of things about Python basics:
- How Python variables work
- How Python conditional statements work
- How Python looping (while & for) works
- How to use Lists: Collection | Array
- Dictionary Key-Value Collection
- How we can iterate through these data structures
- Objects and Classes
- Attributes as objects’ data
- Methods as objects’ behavior
- Using Python getters and setters & property decorator
- Encapsulation: hiding information
- Inheritance: behaviors and characteristics
Congrats! You completed this dense piece of content about Python.
Če želite popoln tečaj za Python, se naučite več resničnih veščin kodiranja in gradite projekte, poskusite enomesečni Python Bootcamp . Se vidimo ☺
Za več zgodb in objav o mojem učenju in obvladovanju programov spremljajte mojo publikacijo The Renaissance Developer .
Zabavajte se, nadaljujte z učenjem in vedno kodirajte.
Moj Twitter in Github. ☺